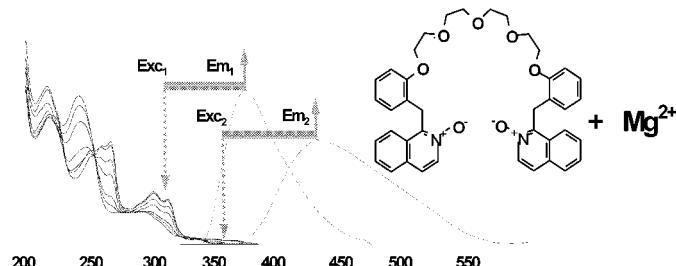


Bis(isoquinoline *N*-oxide) Pincers as a New Type of Metal Cation Dual Channel Fluorosensor


Daniel Collado,[†] Ezequiel Perez-Inestrosa,^{*,†} Rafael Suau,[†]
Jean-Pierre Desvergne,[‡] and Henri Bouas-Laurent[‡]

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga,
E-29071 Málaga, Spain, and Laboratoire de Chimie Organique et Organométallique,
CNRS-UMR 5802, Université Bordeaux 1, F-33405 Talence Cedex, France

inestrosa@uma.es

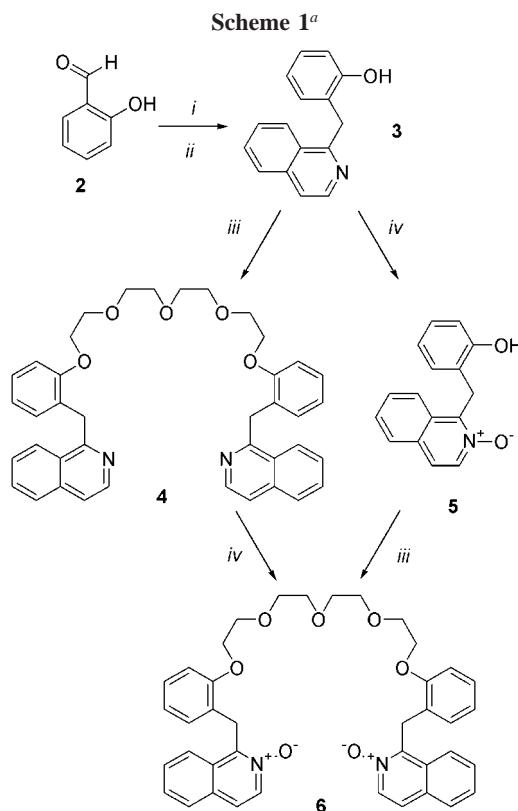
Received January 16, 2002

ABSTRACT

A new type of donor-spacer-acceptor podand system has been synthesized and proved as an efficient dual channel fluorosensor for Li^+ , Mg^{2+} , and Ca^{2+} . The known ability for the *N*-oxide function to bind Lewis acids is the key step in the appearance of a new emitting charge-transfer (CT) excited state. The occurrence of this CT state for alkaline earth (Mg^{2+} and Ca^{2+}) and not for alkaline metals (Li^+) provided a new type of dual channel fluorosensors.

The application of fluorescence techniques to the detection, identification, and titration of protons and metal ions has fostered a tremendous research activity for the past 12 years.¹ Because of its sensitivity, fluorescence proves very useful for real time sensing of traces for applications in biology and environmental monitoring.^{1d,e} Fluoroionophores are

known to undergo a change of emission intensity and wavelength on cation binding. Of special interest are systems with two emitting states such as monomer/eximer² or locally excited (LE)/internal twisted charge transfer state (TICT).³ Fluorosensors that allow measurement at two different emission bands permit signal rationing, which can increase the dynamic range and provide built-in correction for environmental effects.⁴

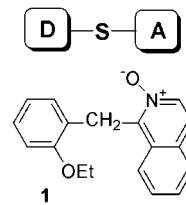

[†] Universidad de Málaga.
[‡] Université Bordeaux 1.

(1) (a) *Fluorescent Chemosensors for Ion and Molecular Recognition*; Czarnik, A. W., Ed.; ACS Symposium Series 538; American Chemical Society: Washington, DC, 1993. (b) *Chemosensors of Ion and Molecules Recognition*; Desvergne, J.-P., Czarnik, A. W., Eds.; NATO Asi Series; Kluwer: Dordrecht, 1997. (c) Amendola, V.; Fabbrizzi, L.; Lichelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. *Coord. Chem. Rev.* **2000**, 192, 649–669. (d) *Fibre Optic Chemical Sensors and Biosensors*; Wolfbeis, O. S., Ed.; CRC Press: Boca Raton, 1991. (e) *Handbook of Fluorescent Probes and Research Chemicals*; Larison, K. D., Ed.; Molecular Probes Inc.: Eugene, OR, 1992. (f) de Silva, P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. *Chem. Rev.* **1997**, 97, 1515–1566 and references therein. (g) Rurack, K. *Spectrochim. Acta, Part A* **2001**, 57, 2161–2195.

(2) (a) Bouas-Laurent, H.; Castellan, A.; Daney, M.; Desvergne, J.-P.; Guinand, G.; Marsau, P.; Riffaud, M. *J. Am. Chem. Soc.* **1986**, 108, 315–317. (b) Bouas-Laurent, H.; Desvergne, J.-P.; Fages, F.; Marsau, P. *Fluorescent Chemosensors for Ion and Molecular Recognition*; Czarnik, A. W., Ed.; ACS Symposium Series 538; American Chemical Society: Washington, DC, 1993; Chapter 5, p 59.

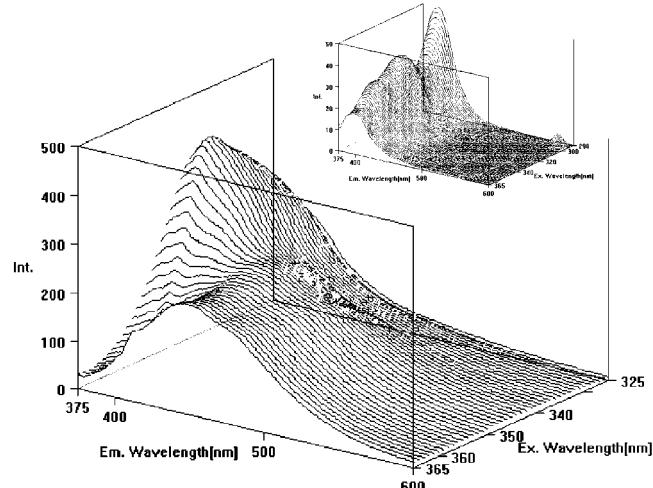
(3) (a) Valeur, B.; Leray, I. *Coord. Chem. Rev.* **2000**, 205, 3–40. Desvergne, J.-P.; Perez-Inestrosa, E.; Bouas-Laurent, H.; Janosauskas, G.; Oberle, J.; Rulliere, C. In *New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Science*; Valeur, B., Brochon, J.-C., Eds.; Springer-Verlag: Berlin, 2001; Chapter 8. (b) Létard, J.-F.; Delmond, S.; Lapouyade, R.; Braun, D.; Relug, W.; Kreissler, M. *Recl. Trav. Chim. Pays-Bas* **1995**, 114, 517.

Here we report on the remarkable properties of a new type of dual channel fluorosensor, podand **6** (Scheme 1), which can act as an efficient probe for Li^+ , Mg^{2+} , and Ca^{2+} .


^a Reagents and conditions: (i) TsCl , CH_2Cl_2 , TEBA, 11 N NaOH , then NaBH_4 , THF , then SOCl_2 , Δ ; (ii) isoquinoline Reissert, PhH , TEBA, 19 N NaOH , then 1 N NaOH , EtOH , Δ ; (iii) NaH , DMF , tetraethylene glycol di-*p*-toluenesulfonate; (iv) *m*CPBA, CHCl_3 .

Podand **6** was synthesized as shown in Scheme 1. The salicylaldehyde (**2**) was sequentially transformed into the *o*-toluenesulfoniloxy benzyl chloride and coupled to isoquinoline Reissert, to finally obtain the phenolic-benzyl isoquinoline **3** in 65% overall yield. Coupling to tetraethylene glycol di-*p*-toluenesulfonate (TEGDT) to obtain the podand **4** and *N*-oxidation with *m*-chloroperbenzoic acid (*m*CPBA) provided **6** in 55% yield (from **3**). Alternatively, we found that driving first the *N*-oxidation to **5** and subsequent coupling to TEGDT produced a similar overall yield (45%).

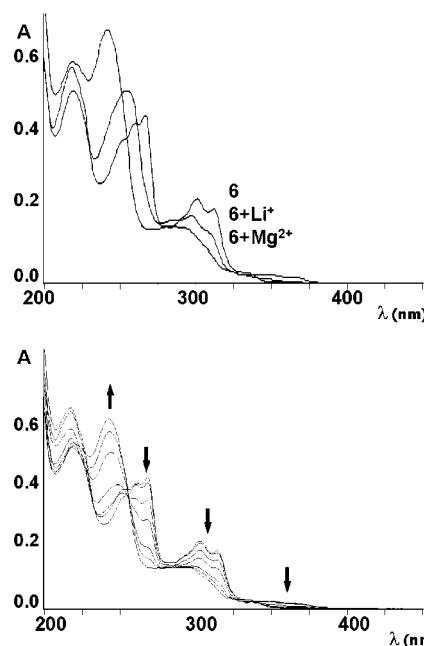
The fluorescence of **6** and the reference compound **1** (Figure 1) is controlled by the unique properties of the donor-spacer-acceptor (D-S-A) system, which displays a charge transfer (CT) fluorescence when the *N*-oxide group is coordinated to a positively charged species.⁵


The fluorescence emission of compound **1** is illustrative of these properties: under neutral conditions a non-structured

(4) (a) Kawanishi, Y.; Kikuchi, K.; Takakusa, H.; Mizukami, S.; Urano, Y.; Higuchi, T.; Nagano, T. *Angew. Chem., Int. Ed.* **2000**, *39*, 3438–3440. (b) Deo, S.; Godwin, H. A. *J. Am. Chem. Soc.* **2000**, *122*, 174–175. (c) de Silva, A. P.; Eilers, J.; Zlokarnik, G. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 8336. Mello, J. V.; Finney, N. S. *Angew. Chem., Int. Ed.* **2001**, *40*, 1536–1538.

Figure 1. Donor-acceptor covalently linked through methylene spacer reference compound **1**.

emission culminating at 399 nm is recorded whatever the excitation wavelength (inset in Figure 2), but on protonation


Figure 2. Three-dimensional recording of the emitting wavelength of a 1×10^{-5} M solution of **1** in acetonitrile in the presence of TFA. On going from short to long exciting wavelength the LE emission of the protonated isoquinoline *N*-oxide at about 380 nm is replaced by a CT state emission centered at 450 nm. Only the LE emission of the uncomplexed chromophore (about 400 nm) is observed in absence of coordinating substances (inset). Compound **6** behaves similarly.

of the *N*-oxide function the LE emission ($\pi\pi^*$ transition having a strong internal CT character in isoquinoline *N*-oxide⁶) is blue-shifted to ~ 380 nm ($\Delta\nu = 1250 \text{ cm}^{-1}$) for $\lambda_{\text{exc}} = 330$ nm and is completely replaced by a new band pointing at $\lambda_{\text{max}} \approx 450$ nm ($\Delta\nu = -2850 \text{ cm}^{-1}$) for $\lambda_{\text{exc}} = 360$ nm. Podand **6** behaves similarly.

A similar result could also be observed with **6** (but not with **1**) in the presence of some alkaline and alkaline earth metal cations. The binding properties of **6** are reflected in a large change of absorption spectra (Figure 3, top), displayed

(5) Previously, we have described the photophysical properties of a related bichromophoric system: Souto-Bachiller, F. A.; Perez-Inestrosa, E.; Suau, R.; Rico-Gomez, R.; Rodriguez-Rodriguez, L. A.; Coronado-Perez, M. E. *Photochem. Photobiol.* **1999**, *70*, 875–881.

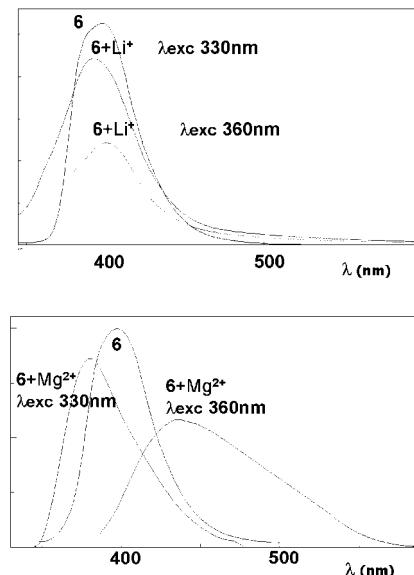
(6) *Heterocyclic N-Oxides*; Albini, A., Pietra, S., Eds.; CRC Press: Boca Raton, 1991.

Figure 3. UV absorption spectra of compound **6** in acetonitrile and their modifications in the presence of excess LiClO₄ and Mg(ClO₄)₂ (top) and spectrophotometric titration with Mg(ClO₄)₂ (bottom).

in both a diminution of the optical density and a hypsochromic shifts of the absorption bands. Perceptibly, the highest effect was obtained in the presence of Mg²⁺, whereas Li⁺ induced a moderate modification. These changes (Figure 3, bottom) were used to determine the association constants (Table 1)⁷ of the podand–metal complexes, evaluated in

Table 1. Fluorescence Emission Data and Association Constants for **6** and Their Cationic Complexes in Acetonitrile

λ_{exc}	6	6 + Li⁺	6 + Mg²⁺	6 + Ca²⁺	
330 nm	λ_{max} (nm) $\Phi_f (10^{-3})$	399 3	388 2	371 1	379 1
360 nm	λ_{max} (nm) $\Phi_f (10^{-3})$	399 3.9 \times 10 ³	431 5.4	431 6	431 1.2 \times 10 ⁵


MeCN at 25 °C. Podand **6** shows a moderate association constant with Li⁺ but binds strongly Mg²⁺ and Ca²⁺; the K_a value ($\sim 1.4 \times 10^5$ M), comparable to that measured for K⁺ and 18-crown-6 in CH₃CN,⁸ is very high for an acyclic

(7) The association constants were calculated according with the method previously described: (a) Desvergne, J.-P.; Bouas-Laurent, H.; Perez-Inestrosa, E.; Marsau, P.; Cotrait, M. *Coord. Chem. Rev.* **1999**, 185–186, 357–379. (b) Perez-Inestrosa, E.; Desvergne, J.-P.; Bouas-Laurent, H.; Rayez, J.-C.; Rayez, M.-T.; Cotrait, M.; Marsau, P. *Eur. J. Org. Chem.* **2002**, 331–344.

(8) (a) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. *Chem. Rev.* **1991**, 91, 1721. (b) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. *Chem. Rev.* **1995**, 95, 2529–2586.

polyether. This is in agreement with the assumption of the participation of the *N*-oxide function in the coordination process for the Mg²⁺ cation. The involvement of the terminal subunits in playing the role of tweezers significantly contributes to stabilization of the complex.

The fluorescence of podand **6** is strongly affected in the presence of Li⁺, Mg²⁺, and Ca²⁺ (but not with Na⁺ and K⁺). The addition of Li⁺ in excess (Figure 4, top) leads to a blue

Figure 4. Fluorescence emission spectra of compound **6** in acetonitrile and their modifications in the presence of excess LiClO₄ (top) and Mg(ClO₄)₂ (bottom). The emission of the free **6** culminates at 399 nm. The Mg²⁺ complex emits at 371 nm (λ_{exc} 330 nm) and 431 nm (λ_{exc} 360 nm).

shift (388 nm, $\Delta\nu \approx 700 \text{ cm}^{-1}$) of the LE emission band on excitation at 330 nm; no other emission is observed.

In contrast, the addition of an excess of Mg²⁺ (Figure 4, bottom) leads to an enhancement of the hypsochromic shift of the LE emission band ($\Delta\nu \approx 1900 \text{ cm}^{-1}$) on excitation at 330 nm between the uncomplexed and complexed **6** and a second emission band centered at 431 nm ($\Delta\nu \approx -1860 \text{ cm}^{-1}$) on exciting at 360 nm. Ca²⁺ shows a similar behavior. The difference of hypsochromic shifts between Li⁺ and Mg²⁺ reflects the difference of binding ability.

The second emission is ascribed to an “*interchromophoric*” emitting CT state. Application of the Weller treatment⁹ to the energetic of intramolecular electron transfer in this kind of D-S-A systems shows that photoinduced electron transfer is exergonic for the protonated form.⁵ The reduction potential of aromatic *N*-oxides is strongly pH-dependent, reduction being easier under acidic conditions, i.e., the protonated *N*-oxide becomes a much better electron acceptor.¹⁰ Therefore, only when the *N*-oxide is effectively coordinated, the isoquinoline *N*-oxide becomes a better acceptor and the CT state is accessible.

(9) Weller, A. *Physik. Chem.* **1982**, 133, 93–98.

The occurrence of CT state emission when **6** is bound to Mg^{2+} and Ca^{2+} confirms the significant implication of the *N*-oxide function in their coordination. This makes possible the reduction of the isoquinoline *N*-oxide, when transforming it in a better acceptor, and hence the photoinduced electron transfer (PET) from the alkoxybenzene donor moiety, leading to the emitting CT state. However, the *N*-oxide function should not be significantly involved in Li^+ coordination, isoquinoline *N*-oxide remaining as a poor acceptor and inhibiting in this way the PET process. Consequently, a selective response is observed when **6** is coordinated to the cations, being the implication of the *N*-oxide moiety determinant.

(10) For instance, quinoline *N*-oxide $E_{1/2}$ (V) versus SCE (pH) = -1.164 (7), -0.772 (1.8), $\Delta E_{1/2} \approx 0.4$ V; see: *Aromatic Amine Oxides*; Ochiai, E., Ed.; Elsevier: Amsterdam, 1967.

Podand **6** is thus capable of identifying and titrating Li^+ and Mg^{2+} (Ca^{2+}) because of the independent signaling from two emission channels.

Other D-S-A related podands are under study to extend the scope of this new family of fluorosensors and to better understand their photophysical behavior.

Acknowledgment. We thank the Spanish and French governments for grant HF1999-0111 (bilateral program of integrated actions) and the DGESIC-Spanish Ministry of Education and Culture for grant PB97-1077 for financial support. D. Collado also is grateful to DGESIC for the award of a research grant.

Supporting Information Available: Experimental procedure and full characterization for compounds. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL025568M